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In recent years genotyping analysis using mini- and microsatellite markers has provided robust DNA-based
support for facultative parthenogenesis (FP) in several lineages of squamate reptiles (snakes and lizards) and
sharks. Rather than incidental cases of reproductive error, there is growing evidence that FP is an alternative
reproductive strategy and an important mode of reproduction in these phylogenetically divergent vertebrate
groups. Because documentation of FP in vertebrates is in its infancy, additional instances supported by molecular
genetic methods provide insights that advance our general understanding of this phenomenon. Here, in a female
checkered gartersnake (Thamnophis marcianus) reared in isolation since a juvenile, we describe five successive
parthenogenetic litters produced over a 7-year period that resulted in several viable male progeny. Cross species
microsatellite amplification was performed across 30 primer pairs derived from Thamnophis spp. and related
natricines to the female and nine available progeny. Five loci proved heterozygous in the maternal sample with the
progeny differentially homozygous at all but one locus. Combined with evidence pertaining to captive history and
litter characteristics, our analysis supports a specific type of FP, terminal fusion automictic parthenogenesis, over
the competing hypothesis of long-term sperm storage. Importantly, we document that a single individual was
capable of producing successive litters composed of live parthenogens. In two cases, males achieved adulthood and
showed the anatomical potential to demonstrate reproductive competence (normal looking hemipenes and
testes). © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107, 566–572.

ADDITIONAL KEYWORDS: asexual reproduction – automixis – facultative parthenogenesis – microsatellite
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INTRODUCTION

Among multi-cellular bisexual organisms the capacity
to alternate between sexual and asexual reproductive
modes is termed facultative parthenogenesis (FP)
(reviewed by Mogie, 1986; Simon et al., 2003; Avise,

2008, 2012; Lampert, 2008; Neaves & Baumann,
2011). Full-term, viable progeny (i.e. hatched or live-
birth) resulting from FP can occur without genetic
manipulation (e.g. hybridization, genetic tools) in a
variety of animal lineages (Avise, 2008; Lampert,
2008; Sinclair et al., 2009). In vertebrates, FP was
first investigated in commercial turkeys and chickens
in the early 1950s (reviewed by Olsen, 1975), with
no additional examples for over 40 years. In 1997,
FP was documented in multiple lineages of snakes
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(Dubach, Sajewicz & Pawley, 1997; Schuett et al.,
1997, 1998). Subsequently, instances of FP resulting
in live embryos or viable progeny have been reported
in other species of snakes (Groot, Bruins & Breeuwer,
2003; Booth & Schuett, 2011; Booth et al., 2011a, b),
several species of varanid lizards, including the
endangered Komodo dragon, Varanus komodoensis
(Lenk et al., 2005; Watts et al., 2006), and sharks
(Chapman et al., 2007; Chapman, Firchau & Shivji,
2008; Feldheim et al., 2010; Robinson et al., 2011). In
birds, FP has been recently described in embryos of
the zebra finch, Taeniopygia guttata (Schut, Hem-
mings & Birkhead, 2008) and Chinese painted quail,
Coturnix chinensis (Parker & McDaniel, 2009).

To date, naturally occurring and successful FP in
mammals is unknown and attributed to genomic
imprinting (Haig, 2002), a cis-acting mechanism that
silences either the maternally or paternally inherited
copy of a gene while allowing the other copy to be
functional in the embryo (McGrath & Solter, 1984;
Surani, Barton & Norris, 1984; Barlow et al., 1991;
Ohlsson, Hall & Ritzen, 1995; Morrison, Ramsay &
Spencer, 2005; Kono, 2006; Renfree et al., 2009).
However, through genetic manipulations, laboratory
strains of mice have produced viable parthenogens
that can survive to adulthood and reproduce success-
fully (Kono et al., 2004; Kono, 2006; Kawahara & Kono,
2010). Although FP is not uncommon in invertebrates
(Avise, 2008; Lampert, 2008; Buřič et al., 2011;
Lehmann et al., 2011), it appears to be rare in verte-
brates (Avise, 2008; Kearney, Fujita & Ridenour, 2009).

Nearly all suspected cases of FP in birds and squa-
mates result in male offspring, which is attributable to
the ZW sex determination system and specific mode of
FP (Dubach et al., 1997; Schuett et al., 1997, 1998;
Lampert, 2008; Booth & Schuett, 2011; Livernois,
Graves & Waters, 2012). Accordingly, homogametic
males (ZZ) are presumably produced by way of termi-
nal fusion of post-meiotic products, i.e. reduced ovum
and second polar body, which is termed automixis
(reviewed by Mogie, 1986; Avise, 2008; Lampert, 2008).
Specifically, this category of FP is terminal fusion
automictic parthenogenesis (FAP) (Olsen, 1975;
Schuett et al., 1997, 1998; Lampert, 2008). Nonethe-
less, in the Burmese python (Python bivittatus), Groot
et al. (2003) provide evidence that parthenogenetic
female embryos were heterogametic (ZW). In poultry,
the combination of WW cells have long been considered
to be nonviable (Olsen, 1975). However, recent analy-
ses of FP in boid snakes has demonstrated WW cells to
result in viable female progeny (Booth et al., 2011a, b).
To date, we are unaware of any non-experimentally
induced WW female parthenogens outside of boids.
Progeny resulting from FAP are probably diploid,
predominantly homozygous, and identical for approxi-
mately 50% of their genomes (Olsen, 1975; Schuett

et al., 1997, 1998; Lampert, 2008). Unlike boids and
pythonids (Groot et al., 2003; Booth et al., 2011a, b),
FAP in advanced snakes (Caenophidia) results in few
viable progeny and numerous underdeveloped ova,
presumably some of which are homogametic WW
(Olsen, 1975; Schuett et al., 1997; Booth & Schuett,
2011).

The checkered gartersnake (Thamnophis mar-
cianus) is a common natricine (caenophidian) of
western North America (Stebbins, 2003). The present
female and progeny of her first litter (one live, two
stillborn) were first discussed in Schuett et al. (1997).
Briefly, zookeepers at the Phoenix Zoo collected her on
18 August 1992 as a juvenile (b. 1992) in Maricopa
County, Arizona, where she was reared at the zoo to
adulthood (1992–2000). Subsequently, we (G.W.S.)
maintained her at Arizona State University and later
Georgia State University (2000–2003). At no time was
she exposed to any other snake. In the original
description (Schuett et al., 1997), no molecular analy-
ses were performed to provide robust support for
parthenogenesis.

Here we used microsatellite genotyping to analyse
the female T. marcianus and nine of her progeny from
four of five litters produced from 1997 to 2003. No
progeny from her last litter in 2003 were available for
DNA-based analysis. Through our genetic analysis,
FAP was detected in all offspring that were tested.
Several of her litters contained viable male progeny,
two of which survived to adulthood and exhibited the
potential for sexual competence (i.e. the presence of
hemipenes and testes). Assuming that such partheno-
gens are ultimately shown to be sexually competent,
our current findings suggest that a single unmated
female may have at least the potential to initiate a new
population in the absence of other unrelated males,
which extends the potential significance of this captive
phenomenon.

MATERIAL AND METHODS
MICROSATELLITE ANALYSIS

DNA samples consisted of ethanol-stored (95%)
tissues (blood, liver, muscle) and air-dried shed skins
that had been stored for 5–12 years at -20 °C. Whole
genomic DNA was extracted using the DNeasy DNA
extraction kit (QIAGEN Inc., Valencia, CA, USA)
according to the manufacturer’s protocol and stored at
-20 °C. Because no polymorphic species-specific mic-
rosatellite markers have been published for T. mar-
cianus, we used the polymerase chain reaction (PCR)
to screen 30 microsatellite markers developed for
other Thamnophis species and related natricine
snakes following amplification profiles described by
the respective authors. Te1Ca2, Te1Ca3, Te1Ca18,
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Te1Ca50 (Garner et al., 2004); Ts2a, Nsm2b, Nsm3a,
Nsm9d (Albright, 2001); TE051B, TS010 (Manier
& Arnold, 2005); and Ts1, Ts3, Ts4 (McCracken,
Burghardt & Houts, 1999) were genotyped on
an EGene® multicapillary electrophoresis system
(Irvine, CA, USA). This instrument uses disposable
micro-channel cartridges containing sieving-gel
matrix with EtBr dye to generate gel images and
allele sizes. Internal 25-bp size markers where incor-
porated into each run. Peaks generated were cleaned
and called using Biocalculator (Qiagen). TbuA01,
TbuA03, TbuA04a, TbuA09, TbuA27, TbuA28,
TbuA49, TbuA62, TbuA64, TbuA70, Tbu74, TbuA83,
TbuA92, TbuA95, TbuB10, TbuB12, and TbuB38
(Sloss et al., 2012) were genotyped on a LiCor 4300
(dual laser) DNA analyser (Li-Cor, Inc., Lincoln, NB,
USA) with the forward primer of each end labelled
with an M13F-29 IRDye tag (Li-Cor). Results were
analysed using GENEPROFILER software (Scanalyt-
ics, Inc., Rockville, MD, USA). Prior to automated
sequencing, products were visualized by agarose gel
(2%) electrophoresis to determine whether successful

amplification occurred. To check for reliability across
PCR and genotyping machine runs, each locus was
repeated from the PCR stage and genotyped a second
time.

MORPHOLOGICAL EXAMINATION OF

ADULT PARTHENOGENS

The female and two living male offspring died in
transit while being air-shipped in 2003. These indi-
viduals were subsequently stored frozen (-20 °C).
Examination of thawed tissues of the progeny
revealed the presence of normal looking hemipenes
and testes. While being examined, both testes were
removed, and placed in 10% buffered formalin for 3
weeks. Subsequently, they were processed through
various concentrations of EtOH and prepared for his-
tological analyses. Once embedded in paraffin and
sectioned (10 mm), all samples were stained with
Erlich’s haemotoxylin.

RESULTS

The reproductive history of the female we studied is
presented in Table 1. She produced five litters from
1997 to 2003, which were composed of three viable
(live and normal in appearance) and 11 non-viable
(stillborn) progeny, as well as numerous yolked ova.
Many of the stillborn progeny showed severe devel-
opmental abnormalities. Of the 30 microsatellite loci
screened, 18 amplified unambiguous and repeatable
products in the size range expected: Ts2a, Nsm2b,
Nsm3a, Nsm9d (Albright, 2001); and TbuA3, TbuA4,
TbuA27, TbuA49, TbuA62, TbuA64, TbuA70,
TbuA74, TbuA83, TbuA92, TbuA95, TbuB10,
TbuB12, TbuB38 (Sloss et al., 2012). Of these, five
proved maternal heterozygous and were informative
to our central hypothesis of FAP (Table 2). At four loci,
differential homozygosity was observed in each of the

Table 1. Reproductive data for the female Thamnophis
marcianus in our study

Births

Progeny

Live Stillborn Yolked ova

1997 1 2 6
1999 1 2 5–7
2000 1 2 3
2002 0 2 6
2003 0 3 3–5

The live progeny (males) produced in 1997 and 1999 were
normal in appearance and survived to adulthood. In
nearly all cases, stillborn progeny showed slight to severe
developmental abnormalities.

Table 2. Genotypes of the unmated (virgin) female Thamnophis marcianus and nine of her progeny for five maternally
heterozygous microsatellite loci: note heterozygosity at locus TbuB10 in progeny 6–9

Snake ID Litter year TbuA3 TbuA62 TbuA64 TbuA83 TbuB10

Mother Wild-collected 247/253 301/340 256/258 354/364 185/193
Progeny 1 1997 247/247 340/340 256/256 364/364 185/185
Progeny 2 1999 253/253 340/340 258/258 364/364 193/193
Progeny 3 1999 247/247 340/340 258/258 364/364 185/185
Progeny 4 1999 247/247 340/340 256/256 364/364 185/185
Progeny 5 2000 247/247 301/301 256/256 354/354 185/185
Progeny 6 2000 247/247 301/301 256/256 354/354 185/193
Progeny 7 2000 247/247 301/301 256/256 354/354 185/193
Progeny 8 2002 253/253 301/301 256/256 354/354 185/193
Progeny 9 2002 247/247 301/301 256/256 354/354 185/193
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progeny, and at a single locus (TbuB10), four progeny
(6–9) possessed identical genotypes to their mother.
Gross morphological examination of the two male
progeny that achieved adulthood – revealed normal-
looking hemipenes and testes; however, histological
analysis of the sectioned testes was inconclusive
regarding the presence of spermatozoa.

DISCUSSION

Since Schuett et al. (1997, 1998) and Dubach et al.
(1997), the number of cases of virgin births docu-
mented via genotyping analyses in squamates (Groot
et al., 2003; Lenk et al., 2005; Watts et al., 2006;
Booth & Schuett, 2011; Booth et al., 2011a, b) and
sharks (Chapman et al., 2007, 2008; Feldheim et al.,
2010; Robinson et al., 2011) has gradually increased.
Here, in the checkered gartersnake (T. marcianus),
we present multiple lines of evidence that successive
litters were produced by FAP over a period of 7 years.
The fact that the female we studied was isolated from
all other snakes shortly after her birth is compelling
evidence alone (i.e. without DNA-based analysis) of
FP, especially because other modes of reproduction
(e.g. hermaphroditism) are entirely unknown in
snakes. But, through the use of microsatellite geno-
typing analysis, we provide specific and robust evi-
dence for terminal FAP (Avise, 2008; Lampert, 2008).

FAP VERSUS LONG-TERM SPERM STORAGE

In both squamates and sharks, the primary compet-
ing hypothesis to FAP is long-term sperm storage
(LTSS), a phenomenon reported in a wide variety
of vertebrates and invertebrates (Schuett, 1992;
Hamlett & Koob, 1999; Holt & Lloyd, 2010). The
longest genetically confirmed record of LTSS in a
vertebrate is by the rattlesnake Crotalus adaman-
teus, which was captured as a young adult and ~60
months later produced a large (N = 19), healthy litter
composed of both males (N = 9) and females (N = 10)
(Booth & Schuett, 2011). In this study, we reject
the alternative hypothesis of LTSS for three main
reasons. First, for a male to have been a sire to each
of the progeny, mating would have had occurred in
the wild prior to the female’s collection. But, owing to
her age (~2–3 months old) and diminutive size at the
time of her capture, successful mating is highly
improbable. Second, no discernible paternal allele
was detected in any of her progeny. For a male to
have been a sire, he must share identical genotypes at
each of the maternally heterozygous loci and contrib-
ute the identical maternal allele to each progeny. The
probability of this result is infinitesimally small
(probability of contributing identical maternal allele
at four loci per progeny = 0.0039; combined probabil-

ity across nine progeny = 2.087 ¥ 10-22). Furthermore,
because FAP increases homozygosity across much of
the genome (Pearcy, Hardy & Aron, 2011), the detec-
tion of progeny expressing identical heterozygous
genotypes as the mother was not unexpected
(Lampert, 2008). Whereas FAP in boids and pytho-
nids results in female (WW or ZW) embryos or
progeny (Groot et al., 2003; Booth et al., 2001a, b),
caenophidian snakes, a group containing the majority
of extant species, FAP has been characterized by only
male progeny, as well as frequent developmental fail-
ures (e.g. WW) or developmental abnormalities
(Schuett et al., 1997, 1998; Booth & Schuett, 2011),
which we report here across each of the five succes-
sive litters. Presumably, FAP allows for the expres-
sion of lethal alleles as a result of elevated
homozygosity (Hedrick, 2007). Although we report
multiple stillborn progeny that exhibited slight to
severe deformities, three individuals were normal in
appearance, two of which survived to adulthood.

EVIDENCE FOR SEXUAL COMPETENCE

IN MALE PARTHENOGENS

Our two adult male parthenogens that died in transit
appeared to have the capacity to reproduce given that
they had normal-looking hemipenes and testes.
Although our results are evocative, reproductive com-
petence of FP progeny remains to be demonstrated
in both squamates and sharks (Lenk et al., 2005;
Lampert, 2008). In support of the view that FP
progeny in squamates and sharks can be reproduc-
tively competent, male parthenogen turkeys (Melea-
gris gallopavo) are capable of mounting hens and
fertilizing eggs (Olsen, 1975; Cassar, John & Etches,
1998). Similarly, laboratory mice that have been
genetically manipulated to undergo parthenogenesis
can produce viable offspring that achieve adulthood
and successfully reproduce (Kono et al., 2004; Kono,
2006; Kawahara & Kono, 2010).

OTHER CASES OF FAP IN GARTERSNAKES

Since FAP was discovered in gartersnakes (genus
Thamnophis) using minisatellite analysis (Schuett
et al., 1997), it has been inferred in two other cases.
Murphy & Curry (2000) described two presumed
virgin births, one year apart, by a 3-year-old plains
gartersnake (T. radix), purchased as a 15-cm neonate
and isolated from males from birth. Litter character-
istics mirrored those described here, i.e. low numbers
of viable male progeny and high numbers of develop-
mental failures. A decade later, Germano & Smith
(2010) described two instances of virgin births in a
Sierra gartersnake (T. couchii). Although the age of
the female was unknown, her mass at capture (38.3 g)
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suggests she was obtained as a juvenile (adult
females are ~200 g). Microsatellite genotyping was
applied to the female and the only viable (male)
progeny from her second litter. However, the finding
of identical homozygous genotypes in both the mother
and male progeny does not permit a definitive deter-
mination of FAP. Regardless, the captive history and
litter characteristic in these two reports strongly
suggest cases of FAP.

SUCCESSIVE VIRGINS BIRTHS IN VERTEBRATES

Successive virgin births (i.e. over separate reproduc-
tive seasons) resulting in viable progeny through FAP
have been genetically confirmed in only a handful of
cases. A female captive zebra shark (Stegostoma fas-
ciatum) produced a total of 15 pups over a period of
four consecutive years (Robinson et al., 2011). In
snakes, Booth et al. (2011a, b) described cases of suc-
cessive virgin births in two species of New World
boids (Boa constrictor, Epicrates maurus). It therefore
appears that successive virgin births are probably
common in species exhibiting FAP and only through
the application of informative molecular tools will the
extent of this phenomenon be determined (Booth &
Schuett, 2011).

FUTURE RESEARCH DIRECTIONS FOR FP

In captive squamates and sharks, only recently has
FP been rigorously documented using DNA-based
genotyping methods (Schuett et al., 1998; Lenk et al.,
2005; Watts et al., 2006; Booth & Schuett, 2011; Booth
et al., 2011a, b). Rather than incidental cases of repro-
ductive error (Avise, 2008; Lampert, 2008), there is
accumulating evidence that FP in squamates and
sharks is an alternative reproductive strategy and a
potentially important mode of reproduction in these
groups of vertebrates (Booth et al., 2011a, b; Neaves
& Baumann, 2011). Accordingly, nonhybrid occur-
rences (origins) of parthenogenesis may be more
common than previously thought (Sinclair et al.,
2009). Nonetheless, the evolutionary significance of
FP (e.g. FAP) in squamates, sharks, and perhaps
other vertebrates cannot be established until docu-
mentation is made in nature and the reproductive
competence of parthenogens is established.

Beyond the role of hybridization (Sinclair et al.,
2009; Lutes et al., 2011), the cues that trigger an
individual to switch from sexual to asexual reproduc-
tion, such as FP, are unknown in squamates and
sharks. Based on current knowledge, the absence
of males is not a sufficient explanation (Booth &
Schuett, 2011; Booth et al., 2011b). In poultry and
quail, for example, viruses (live fowl pox) and genetic
factors (e.g. selective breeding) can promote (increase)

instances of FAP (Olsen, 1975; Parker et al., 2010). In
a variety of invertebrates, infections caused by cyto-
plasmatically inherited endosymbionts (e.g. the bac-
terium Wolbachia) are common and can induce FP
(Simon et al., 2003). Interestingly, in these cases, FP
can be reversed (restoration of sexual reproduction)
via antibiotic or thermal treatments (Lehmann et al.,
2011). Thus, investigating the proximate mechanisms
of FP (e.g. FAP) in squamates and sharks is a rich
area for future research programmes (Neaves &
Baumann, 2011).
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